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Abstract
We show that the exact integrator for the classical Kepler motion, recently found
by Kozlov (2007 J. Phys. A: Math. Theor. 40 4529–39), can be derived in a
simple natural way, using a well-known exact discretization of the harmonic
oscillator. We also draw attention to important earlier references, where the
exact discretization of the four-dimensional isotropic harmonic oscillator has
been applied to the perturbed Kepler problem.

PACS numbers: 45.10.−b, 45.50.Pk, 02.70.Bf, 02.60.Cb, 02.30Hq, 02.30Ik
Mathematics Subject Classification: 65P10, 65L12, 34K28

In recent years several conservative discretizations of the classical Kepler problem have been
proposed [1–5]. These numerical integrators preserve all integrals of motion and trajectories
but only Kozlov’s schemes are of order higher than 2. Kozlov also found the exact integrator
by guessing its proper form and summing up some infinite series [4].

In this comment we show that Kozlov’s exact integrator can be derived in a simple
elementary way. Conservative discretizations of the three-dimensional Kepler motion obtained
in [3, 4] consist in applying the midpoint rule (or the discrete gradient method, compare [6])
to the isotropic four-dimensional harmonic oscillator equations:

dQ
ds

= 1

4
P,

dP
ds

= 2EQ (Q, P ∈ R
4) (1)

where E = const is the energy integral of the considered Kepler motion. Then, the authors
of [3, 4] use the Kustaanheimo–Stiefel (KS) transformation. This classical transformation is
given by ([7], see also [4])
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⎛
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where Q, P are subject to the constraint

P1Q4 − P2Q3 + P3Q2 − P4Q1 = 0. (4)

The KS transformation, together with the Lévi-Cività time transformation

dt

ds
= |q| (5)

maps the four-dimensional harmonic oscillator (1) into the three-dimensional Kepler problem
equations:

dq
dt

= p,
dp
dt

= − kq
|q|3 (q, p ∈ R

3), (6)

where k = const. Using (2), (3) and (4) we can verify the useful identities

|q|2 = |Q|4, |P|2 = 4|p|2|Q|2, (7)

which imply the equivalence of the energy conservation laws:

1

2
p2 − k

|q| = E ⇐⇒ 1

8
|P|2 − E|Q|2 = k. (8)

The phenomenon of interchanging coupling constants with integrals of motion (like
k ↔ E) is quite well known in the theory of integrable systems, see [8] (compare also [9],
where more general results can be found).

In order to derive Kozlov’s numerical results in a simple straightforward way it is sufficient
to note that the KS transformation (used by Kozlov) reduces the Kepler motion to linear
ordinary differential equations with constant coefficients (namely to the harmonic oscillator)
and for all such equations there exist explicit exact numerical integrators ([10, 11], see also
[12]). By the exact discretization of an ordinary differential equation ẋ = f (x), where
x(t) ∈ R

N , we mean the one-step numerical scheme of the form Xn+1 = �h(Xn), such that
Xn = x(tn), compare [10, 11].

The system (1), equivalent to the four-dimensional harmonic oscillator equation, admits
the exact discretization (see, for instance, [12]):

Qj+1 − Qj

δ(hj )
= 1

4

Pj+1 + Pj

2
,

Pj+1 − Pj

δ(hj )
= 2E

Qj+1 + Qj

2
,

(9)

where hj := sj+1 − sj is the (variable) s-step, Qj , Pj denote j th iteration of the numerical
scheme (not to be confused with the coordinates Qj, Pj ) and

δ(hj ) = 2

ω
tan

ωhj

2
, ω2 = −1

2
E. (10)

In the case of the constant step hj = h and E < 0, we recognize here the exact
integrator found by Kozlov (see formulae (4.11) and (4.14) from [4], taking into account
that δ(h) = ha(h) = hb(h) and E = −A). The hyperbolic and parabolic cases (formulae
(4.16) and (4.18) from [4]) follow immediately when we take imaginary ω (i.e. E > 0) or
ω = 0. The exact numerical scheme (9) preserves the energy integral, i.e.

1
8 |Pj |2 − E|Qj |2 = k. (11)

Note that the system (9) can be rewritten in the explicit form:

Qj+1 = cos ωhj Qj +
sin ωhj

4ω
Pj ,

Pj+1 = −4ω sin ωhj Qj + cos ωhj Pj .

(12)
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This system is a direct consequence of evaluating the exact solution of (1) at s = sj and
s = sj + hj , compare [12].

Equation (5) can be solved exactly in different (but more or less equivalent) ways, compare
[4, 13, 14]. Here we propose one more approach, reducing this problem to linear ordinary
differential equations with constant coefficients. If Q, P satisfy (1) and t satisfies (5), then we
easily check that

dw
ds

= �w, w =

⎛
⎜⎜⎝

|Q|2
|P|2

Q · P
t

⎞
⎟⎟⎠ , � =

⎛
⎜⎜⎝

0 0 1
2 0

0 0 4E 0
2E 1

4 0 0
1 0 0 0

⎞
⎟⎟⎠ . (13)

In such a case we can proceed in a standard way. The general solution is given by
w(s) = exp(s�)w(0). Therefore, the exact discretization, wn = w(hn), satisfies

wn+1 = exp(h�)wn, (14)

and the problem reduces to the well-known, purely algebraic procedure of computing e�h. In
our particular case we observe that �4 = 2E�2 which simplifies computations. The last row
in equation (14) reads

tj+1 = tj +
sin 2hω

4ω

(
|Qj |2 − |Pj |2

16ω2

)
+

h

2

(
|Qj |2 +

|Pj |2
16ω2

)
+

Qj · Pj sin2 hω

4ω2
. (15)

One can check by direct computation that discretization (15), although has a simpler form, is
identical with formulae (4.11), (4.15) of [4]. Finally, eliminating |Pj |2 by virtue of (11), we
get

tj+1 = tj +
hk

4ω2

(
1 − sin 2hω

2hω

)
+

sin 2hω

2ω
|Qj |2 +

Qj · Pj sin2 hω

4ω2
. (16)

Another approach (see [13]) consists in computing the integral
∫ |Q(s)|2ds, where Q is the

exact solution of (1). Formula (86) from [13] is identical to (16) (although notation is quite
different).

In celestial mechanics the exact discretization of the Kepler motion via the KS
transformation appeared as a quite natural step [13–15], although the conservative properties
of the exact integrator are not discussed explicitly in these papers. Long ago Stiefel and Bettis,
working in the framework of the Gautschi approach [17], applied the exact discretization of
the harmonic oscillator to the perturbed Kepler motion [15, 16].

More recently, Mikkola [13] and Breiter [14] proposed new integrators for the perturbed
Kepler problem, using the exact solution of the four-dimensional isotropic harmonic oscillator
equation and the exact discretization (16) of the time (known to Stumpff even before the KS
transform was invented, compare [13]). In particular, the numerical scheme (12) can be found
in [13], p 162, and in [14], p 234. Breiter follows [18] using an additional constant in the
definition of the KS transformation (in fact scaling both q and p). The freedom of choosing
this parameter can be used to fix the value of ω (e.g. ω = 1) which may have numerical
advantages [14].

These important results of celestial mechanics are not mentioned in [4] and, in general,
they seem to be rather unknown in the field of geometric numerical integration [19]. It is
worthwhile to mention that the exact discretization of the harmonic oscillator equation has
been recently used to construct new geometric integrators of high accuracy (‘locally exact
discrete gradient schemes’) [12, 20]. We plan to apply this scheme to the perturbed Kepler
problem using the Kustaanheimo–Stiefel map.
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